Families of Graphs

A family is a group of equations with similar characteristics. The following are examples of families of graphs:

<table>
<thead>
<tr>
<th>Linear</th>
<th>Quadratic</th>
<th>Absolute Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exponential Growth</th>
<th>Exponential Decay</th>
<th>Inverse Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cubic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Look at the graphs you sketched on Part one of this activity. Identify each with one of the family names.
Non-Linear and Linear Equations

We can classify equations by the shapes of their graphs. Consider the equations below. Sketch a graph of each equation using the graphing calculators. Group the equations into different “families”, that is groups of equations with similar characteristics.

a. \(y = \frac{3}{x} \)

b. \(y = x + 3 \)

c. \(y = x - 3 \)

d. \(y = 3 - x \)

e. \(y = x^2 + 3 \)

f. \(y = |x + 3| \)

g. \(y = -x \)

h. \(y = |3x| \)

i. \(y = \frac{3}{x} - \frac{4}{x} \)

j. \(y = 2^x \)

k. \(y = \left(\frac{1}{4}\right)^x \)
Function Families Worksheets

1. \(y = 2x^3 \)

m. \(y = 5^x \)

n. \(y = -2x^2 - 1 \)

o. \(y = \left(\frac{2}{5} \right)^x \)

p. \(y = |x| - 4 \)

q. \(y = (0.6)^x + 2 \)

r. \(y = (0.3)x^2 \)

s. \(y = \frac{-8}{x} \)

t. \(y = 4x^2 - 3 \)

u. \(y = 3|x + 2| \)

v. \(y = (-\frac{1}{2})x^2 - 5 \)